How to compensate the effects of ageing and fading in PADC detectors

Prof. Marco Caresana

marco.caresana@polimi.it

2° interconfronto internazionale radon in campo per sistemi di misura passivi: ambienti lavorativi e abitativi
Motivation

On filed measurements:

- Several months of measurement duration
- Non controlled environmental parameters

The calibration factor measured in a reference facility
1) High concentration
2) Short duration

Must be exported

To an on field measurement.
1) low concentration
2) Long duration
Theory – Limit angle

\[\theta_c \text{ Limit angle} \]

\[\theta \]

\[\beta \]

\[V_B \cdot t \]

Pre-etching surface

Post-etching surface

\[L(E,t) = \cos \theta \int V_T(E,t) dt - V_B \cdot t \]

\[\int_0^t V_T(E,t') dt' \approx V_T \cdot t \]

\[c \theta \int V_T(E,t') dt' - V_B \cdot t > 0 \quad \Rightarrow \quad \cos \theta \cdot V_T > V_B \]

\[\cos \theta_c = \frac{V_B}{V_T} \]

\[\cos \theta_c = \frac{1}{V} \]

\[V = \frac{V_T}{V_B} \text{ Reduced track attack velocity} \]

Criterion for track etching

Prof. Marco Caresana, Energy Dept.
Theory – Assessment of the intrinsic efficiency

Blind solid angle: integral between θ_c and $\pi/2$

$$\frac{1}{2\pi} \int_{\theta_c}^{\pi/2} 2\pi \cdot \sin\theta' d\theta' = \cos \theta_c$$

$$\epsilon = 1 - \cos \theta_c = 1 - \frac{1}{V}$$
In tracks formed by fission fragments from ^{252}Cf, $V>>1$. Equation (1) can be approximated as:

$$d \approx 2 \cdot h$$
Fading and ageing test: Irradiations

Detectors: TASLtrack

Detectors coming from a single batch have been divided in groups and subgroups and irradiated in the reference radon chamber and with 252Cf at POLIMI.

Etching has been done at MI.AM

Reading has been done with the Politrack at POLIMI
Fading and ageing test: material and methods

2 irradiation groups **(A, B)** for fading analysis, each group is divided in subgroups. Irradiated both to Radon and 252Cf

Irradiation at time $T=0$

Group A Etching delay after irradiation (months). Storage: -18°C

Group B Etching delay after irradiation (months). Storage: Lab shelf
Fading and ageing test: material and methods

2 irradiation groups (C, D) for ageing analysis, each group is divided in subgroups

Batch reception at time T=0. Delayed irradiation followed by an immediate etching

Group C delay after reception
Storage: -18°C

- C1
- C2
- C3

Group D delay after reception. Storage: Lab shelf

- Radon only D1
- Radon only D2
- 252Cf Only D3

Prof. Marco Caresana, Energy Dept.
Alpha particle tracks are affected by fading, while fission fragment ones aren’t.

V_B remains constant
V_T decreases
Impact of ageing and fading

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup</th>
<th>Without correction</th>
<th>Reference exposure value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measured exposure value (kBq h m^{-3})</td>
<td>Difference %</td>
</tr>
<tr>
<td>A</td>
<td>A1</td>
<td>1362</td>
<td>-2.1</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>1430</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>1403</td>
<td>0.9</td>
</tr>
<tr>
<td>B</td>
<td>B1</td>
<td>1373</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>1105</td>
<td>-20.6</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>749</td>
<td>-46.1</td>
</tr>
<tr>
<td>C</td>
<td>C1</td>
<td>1464</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>1296</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>D1</td>
<td>1235</td>
<td>-15.1</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>963</td>
<td>-25.2</td>
</tr>
</tbody>
</table>

The impact on the sensitivity of fading, seems more severe than ageing
252 Cf V and angle distributions

- Fridge 9 months ageing
- Shelf 9 months ageing
- Shelf 6 months fading
252Cf minor axis distributions

6 months fading

3 months fading

No fading

X axis in µm
The normalized efficiency \mathcal{E} is defined as the ratio between the efficiency measured for a specific group (B2 and B3) and the efficiency measured for the reference groups (A1 and B1).
Fading/ageing compensation

\[
\exp\left(\text{FP}_{\text{ref}}\right) = \frac{\exp(\text{FP})}{1 - \beta(\text{FP} - \text{FP}_{\text{ref}})}
\]

\[
\beta = \frac{m}{m \times \text{FP}_{\text{ref}} + q}
\]

\(\text{FP}_{\text{ref}}\) is the reference fading parameter, defined as the mean value of the fading parameters of the detectors (radon exposure) belonging to groups A1 and B1.
Fading/ageing compensation

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup</th>
<th>Without correction</th>
<th>With correction</th>
<th>Reference exposure value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measured exposure value (kBq h m(^{-3}))</td>
<td>Difference %</td>
<td>Measured exposure value (kBq h m(^{-3}))</td>
</tr>
<tr>
<td>A</td>
<td>A1</td>
<td>1362</td>
<td>-2.1</td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>1430</td>
<td>2.8</td>
<td>1396</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>1403</td>
<td>0.9</td>
<td>1400</td>
</tr>
<tr>
<td>B</td>
<td>B1</td>
<td>1373</td>
<td>-1.3</td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>1105</td>
<td>-20.6</td>
<td>1440</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>749</td>
<td>-46.1</td>
<td>1332</td>
</tr>
<tr>
<td>C</td>
<td>C1</td>
<td>1464</td>
<td>0.6</td>
<td>1411</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>1296</td>
<td>0.6</td>
<td>1263</td>
</tr>
<tr>
<td>D</td>
<td>D1</td>
<td>1235</td>
<td>-15.1</td>
<td>1444</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>963</td>
<td>-25.2</td>
<td>1337</td>
</tr>
<tr>
<td>E</td>
<td>E2</td>
<td>1597</td>
<td>-40.4</td>
<td>2650</td>
</tr>
<tr>
<td>F</td>
<td>F1</td>
<td>342</td>
<td>-16.6</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>728</td>
<td>-21.0</td>
<td>886</td>
</tr>
</tbody>
</table>

The reference exposure value is affected by uncertainty of 5% at a confidence level of 68%.
Conclusions

1) The fading/ageing is due to a reduction of V deriving from a reduction of V_T. V_B is not affected.
2) Fading and ageing can be handled in the same way.
3) The square root of the 90% percentile of the area distribution works very well as fading parameter.
4) The fading/ageing compensated exposure can be measured in a single scan of the plastic.

References

Thanks for your attention